Abstract
Lakes in cold and arid regions are extremely vulnerable to global climate change, and the study of seasonal spatial and temporal fluctuations of lake-groundwater chemistry is of major significance for water resource management and environmental preservation. In this study, we combined hydrogeochemical, multivariate statistical, and spatial interpolation methods to assess spatial and temporal variations of lake and groundwater chemistry in Hulun Lake during the frozen and non-frozen periods. The results show that sodium (Na+) is the most abundant cation in the Hulun Lake area. Bicarbonate (HCO3−) and sulfate (SO42−) are the most predominant anions in the lake, river, and ground water during both seasons. The higher Na+ + K+ concentrations in the frozen season were related to longer circulation time and lower renewable rate. The water chemistry of the lake was of the HCO3-SO4-Cl-Na type and that of groundwater in the east and west regions was of the SO4-Cl-Na and HCO3-Na types, respectively. The chemical compositions of groundwater in the non-frozen season were mainly affected by evaporation and concentration, while rock weathering, evaporation, and human activities jointly controlled groundwater chemical component in the frozen period. Based on hierarchical cluster analysis (HCA) and principal component analysis (PCA) methods, Ca2+, NO3−, and SO42− were identified as the main controlling indicators of the chemical characteristics of groundwater and lake water. The increase of Ca2+ concentration in the center of the lake was related to groundwater discharge along the marginal tectonic fracture zone along the lake shores, which was the potential groundwater discharge area. The unconsolidated aquifer provides recharge channels for groundwater on the eastern side, which has a certain influence on the increase of nutrient concentration (NO3−) in the lake on the eastern shore. This research adds to our rough understanding of the lake-groundwater interaction in Hulun Lake, and provides a scientific foundation for the sustainable use of water resources, as well as the eco-logical integrity preservation in cold and arid regions.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have