Abstract

Fine particulate matter ( PM 2.5 ) is a mixture of pollutants that has been linked to serious health problems, including premature mortality. Since the chemical composition of PM 2.5 varies across space and time, the association between PM 2.5 and mortality could also change with space and season. A statistical multi-stage Bayesian framework is developed and implemented, which provides a very broad and flexible approach to studying the spatiotemporal associations between mortality and population exposure to daily PM 2.5 mass, while accounting for different sources of uncertainty. The first stage of the framework maps ambient PM 2.5 air concentrations using all available monitoring data (IMPROVE and FRM) and an air quality model (CMAQ) at different spatial and temporal scales. The second stage of the framework examines the spatial temporal relationships between the health end-points and the exposures to PM 2.5 by introducing a spatial–temporal generalized Poisson regression model. A method to adjust for time-varying confounders such as seasonal trends is proposed. A common seasonal trends model uses a fixed number of basis functions to account for these confounders, but the results can be sensitive to the number of basis functions. Thus, instead the number of the basis functions is treated as an unknown parameter in the Bayesian model, and a space-time stochastic search variable selection approach is used. The framework is illustrated using a data set in North Carolina for the year 2001.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.