Abstract

Particle image velocimetry experiments were performed to study the impact of realistic roughness on the spatial structure of wall turbulence at moderate Reynolds number. This roughness was replicated from an actual turbine blade damaged by deposition of foreign materials and its features are quite distinct from most roughness characterizations previously considered as it is highly irregular and embodies a broad range of topographical scales. The spatial structure of flow over this rough surface near the outer edge of the roughness sublayer is contrasted with that of smooth-wall flow to identify any structural modifications due to roughness. Hairpin vortex packets are observed in the outer layer of the rough-wall flow and are found to contribute heavily to the Reynolds shear stress, consistent with smooth-wall flow. While similar qualitative consistency is observed in comparisons of smooth- and rough-wall two-point correlations, some quantitative differences are also apparent. In particular, a reduction in the streamwise extent of two-point correlations of streamwise velocity is noted which could be indicative of a roughness-induced modification of outer-layer vortex organization. Proper orthogonal decomposition analysis reveals the streamwise coherence of the larger scales to be most sensitive to roughness while the spatial characteristics of the smaller scales appear relatively insensitive to such effects.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.