Abstract

The creation of stable 1D and 2D localized modes in lossy nonlinear media is a fundamental problem in optics and plasmonics. This article gives a mini review of theoretical methods elaborated on for this purpose, using localized gain applied at one or several hot spots (HS). The introduction surveys a broad class of models for which this approach was developed. Other sections focus in some detail on basic 1D continuous and discrete systems, where the results can be obtained, partly or fully, in an analytical form (and verified by comparison with numerical results), which provides deeper insight into the nonlinear dynamics of optical beams in dissipative nonlinear media. Considered, in particular, are the single and double HS in the usual waveguide with the self-focusing (SF) or self-defocusing (SDF) Kerr nonlinearity, which gives rise to rather sophisticated results in spite of apparent simplicity of the model, solitons attached to a PT-symmetric dipole embedded into the SF or SDF medium, gap solitons pinned to an HS in a Bragg grating, and discrete solitons in a 1D lattice with a hot site.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.