Abstract

We introduce standing-light patterns trapped in a Bragg grating written along the radial direction in a self-focusing (SF) or self-defocusing (SDF) optical medium. Unlike previously studied axisymmetric settings that deal with the axial propagation, we consider the propagation of light in the radial directions (outward and inward), which may give rise to annular gap solitons (AGSs), supported by the circular grating. An estimate for the threshold of the modulational instability of the AGS against azimuthal perturbations in the SF medium is obtained analytically, and verified by direct simulations. In the SDF model, stable annular and dipole solitons are found in a numerical form, while multipole patterns and vortex rings are unstable. Similar solitons are possible in the Bose-Einstein condensate.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call