Abstract

Models of disease dynamics commonly make the assumption of spatial homogeneity in the underlying host population. However, insect behavior may result in spatially heterogeneous populations with which pathogens interact. We modified a simulation model of temporal and spatial population dynamics of the Russian wheat aphid, Diuraphis noxia, on preferred or nonpreferred host plants, by incorporating effects of the entomopathogenic fungus, Beauveria bassiana. Epizootic parameters included time from inoculation of aphids until death, duration of sporulation, and estimated exposure probability. Simulations first predicted results of previously described experiments in which D. noxia adults were inoculated with conidial suspensions or water and placed on wheat or oat seedlings in 81-plant grids in cages. Subsequently, large-scale simulations were run for hypothetical field situations on 50 × 50-plant grids of wheat or oat. With B. bassiana present for both cage and larger scale simulations, results indicated that, on oat, an expanding infection front lagged behind the expanding aphid population front. Continual aphid movement from hosts resulted in many escapes, and the aphid population persisted at slightly reduced levels. On the preferred wheat host, patterns developed with pockets of infected aphids and other pockets of healthy aphids. Localized aphid populations that escaped initial infestation were able to proliferate, whereas other local populations were greatly reduced or became extinct due to lack of movement from the hosts, resulting in increased exposure to pathogen inoculum. Thus, proliferation and fluctuation of the pathogen were strongly influenced by the plant hosts' effects on aphid movement behavior. Incorporating spatial dynamics into disease models should prove useful in other efforts to predict biological control efficacy by entomopathogenic fungi in heterogeneous habitats.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call