Abstract

Particle (monolayer) assembly is essential to various scientific and industrial applications, such as the fabrication of photonic crystals, optical sensors, and surface coatings. Several methods, including rubbing, have been developed for this purpose. Here, we report on the serendipitous observation that microparticles preferentially partition onto the fluorocarbon-coated parts of patterned silicon and borosilicate glass wafers when rubbed with poly(dimethylsiloxane) slabs. To explore the extent of this effect, we varied the geometry of the pattern, the substrate material, the ambient humidity, and the material and size of the particles. Partitioning coefficients amounted up to a factor of 12 on silicon wafers and even ran in the 100s on borosilicate glass wafers at zero humidity. Using Kelvin probe force microscopy, the observations can be explained by triboelectrification, inducing a strong electrostatic attraction between the particles and the fluorocarbon zones, while the interaction with the noncoated zones is insignificant or even weakly repulsive.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.