Abstract

We have experimentally analyzed pattern formation in an optical system composed of a bulk photorefractive crystal subjected to a single optical feedback. In a highly nonlinear regime far above the modulational instability threshold, we are reporting on turbulent spatiotemporal dynamics that leads to rare, intense localized optical peaks. We have proven that the statistics and features of those peaks correspond to the signatures of two-dimensional spatial rogue events. These optical rogue waves occur erratically in space and time and live typically the same amount of time as the response time of the photorefractive material.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.