Abstract

Spatial models of magnetic-field induced electronic ring currents have been constructed for the prismane molecule via stagnation graphs and current density maps. These tools provide an insight into the complicated phenomenology resulting from competition of diatropic and paratropic regimes that determine the magnitude of various components of magnetic susceptibility and magnetic shielding of hydrogen and carbon nuclei. Shielding density maps show that the differential Biot-Savart law, along with an atlas of the current density field, explains magnetic shielding at hydrogen and carbon nuclei and virtual shielding at ring and cage centers.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call