Abstract
Abstract Spatial solitons can exist in various kinds of nonlinear optical resonators with and without amplification. In past years, different types of these localized structures, such as vortices, bright, dark solitons and phase solitons, have been experimentally shown to exist. Many links appear to exist with fields separate from optics, such as fluids, phase transitions or particle physics. These spatial resonator solitons are bistable, and, due to their mobility, suggest systems of information processing not possible with the fixed bistable elements which form the basic ingredients of traditional electronic processing. The recent demonstration of the existence and manipulation of spatial solitons in semiconductor microresonators represents a step in the direction of such optical parallel processing applications. We review pattern formation and solitons in a general context, show some proofof-principle soliton experiments in slow systems, and describe in more detail the experiments on semiconductor resonator solitons which are aimed at applications.
Submitted Version (
Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have