Abstract
Spatial resolution is one of the key factors in orientation microscopy, as it determines the accuracy of grain size investigation and phase identification. We determined the spatial resolutions of on-axis and off-axis transmission Kikuchi diffraction (TKD) methods by calculating correlation coefficients using only the effective parts of on-axis and off-axis transmission Kikuchi patterns. During the calculation, we used average filtering to evaluate the spatial resolution more accurately. The spatial resolutions of both on-axis and off-axis TKD methods were determined in the same scanning electron microscope at different accelerating voltages and specimen thicknesses. The spatial resolution of the on-axis TKD was higher than that of the off-axis TKD at the same parameters. Furthermore, with an increase in accelerating voltage or a decrease in specimen thickness, the spatial resolutions of the two configurations could be significantly improved, from tens of nanometers to below 10 nm. At a voltage of 30 kV and sample thickness of 74 nm, both on-axis and off-axis TKD methods exhibited the highest resolutions of 6.2 and 9.7 nm, respectively.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Applied Sciences
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.