Abstract

The effect of spatial averaging is important for scalar gradient measurements in turbulent nonpremixed flames, especially when the local dissipation length scale is small. Line imaging of Raman, Rayleigh and CO-LIF is used to investigate the effects of experimental resolution on the scalar variance and radial gradient in the near field of turbulent nonpremixed CH4/H2/N2 jet flames at Reynolds numbers of 15,200 and 22,800 (DLR-A and B) and in piloted CH4/air jet flames at Reynolds numbers of 13,400, 22,400 and 33,600 (Sandia flames C/D/E). The finite spatial resolution effects are studied by applying the Box filter with varying filter widths. The resulting resolution curves for both scalar variance and mean squared-gradient follow nearly the same trends as theoretical curves calculated from the model turbulence kinetic energy spectrum of Pope. The observed collapse of resolution curves of mean squared-gradient for nearly all studied cases implies the shape of the dissipation spectrum is approximately universal. Fluid transport properties are shown to have no effect on the dissipation resolution curve, which implies that the dissipation length scale inferred from the square gradient is equivalent to the length scale for the scalar dissipation rate, which includes the diffusion coefficient. With the Box filter, the required spatial resolution to resolve 98% of the mean dissipation rate is about one−two times of the dissipation cutoff length scale (analogous to the Batchelor scale in turbulent isothermal flows). The effects of resolution on the variances of mixture fraction, temperature, and the inverted Rayleigh signal are also compared. The ratio of the filtered variance to the true variance is shown to depend nearly linearly on the probe resolution. The inverted Rayleigh scattering signal can be used to study the resolution effect on temperature variance even when the Rayleigh scattering cross section is not constant. The experimental results also indicate that these laboratory scale turbulent jet flames have small effective Reynolds numbers, such that there is some direct interaction of the large (energy containing) and small (dissipative) scalar length scales, especially for the near field case at x/d = 7.5 of the piloted Sandia flames C/D/E.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call