Abstract
This work presents results from simultaneous high-resolution temperature and velocity measurements in a series of turbulent non-premixed jet flames. The filtered Rayleigh scattering (FRS)-based temperature measurements demonstrate sufficient signal-to-noise (SNR) and spatial resolution to estimate the smallest scalar length scales and accurately determine dissipation rate fields. A comprehensive set of conditional statistics are used to characterize the small-scale structure, including the dependence of dissipation layer widths on Reynolds number, temperature, and dissipation magnitude. In general, the dissipation layer thickness decrease with increasing Reynolds number and increase with increasing temperature. However, dissipation layer widths show two distinct behaviors with respect to dissipation magnitude. For small dissipation values, increases in magnitude results in broadening of the dissipation layer, while for larger magnitude values of dissipation, the layer widths are thinned, highlighting the complexity of small-scale turbulent mixing. Additionally, measured ratios of the dissipation layer width to the Batchelor length scale are consistent across all Reynolds numbers and agree with previous studies in non-reacting flows. The unique aspect about the current set of measurements is the ability to examine the interaction of dissipation structure with turbulent flow parameters for the first time in turbulent non-premixed flames. Particularly, the strain rate/dissipation relationship is examined and compared to previous studies in non-reacting flows. It is found that the dissipation layers tend to align normal to the principal compressive strain axis and this tendency increases with increasing Reynolds number. For the lowest Reynolds number case, no dependence of the dissipation layer width nor dissipation rate magnitude on strain rate is found. However, for higher Reynolds numbers, a strong dependence of the dissipation layer width and dissipation rate magnitude on the principal compressive strain rate is observed. These results indicate the direct role of the compressive strain rate field on small-scale mixing structure in reacting flows.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.