Abstract

We describe a regression‐based statistical methodology suitable for predicting field scale spatial salinity (ECe) conditions from rapidly acquired electromagnetic induction (ECa) data. This technique uses multiple linear regression (MLR) models to estimate soil salinity from ECa survey data. The MLR models incorporate multiple ECa measurements and trend surface parameters to increase the prediction accuracy and can be fitted from limited amounts of ECe calibration data. This estimation technique is compared to some commonly recommended cokriging techniques, with respect to statistical modeling assumptions, calibration sample size requirements, and prediction capabilities. We show that MLR models are theoretically equivalent to and cost‐effective relative to cokriging for estimating a spatially distributed random variable when the residuals from the regression model are spatially uncorrelated. MLR modeling and prediction techniques are demonstrated with data from three salinity surveys.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.