Abstract
Landslide susceptibility mapping is vital for landslide risk management and urban planning. In this study, we used three statistical models [frequency ratio, certainty factor and index of entropy (IOE)] and a machine learning model [random forest (RF)] for landslide susceptibility mapping in Wanzhou County, China. First, a landslide inventory map was prepared using earlier geotechnical investigation reports, aerial images, and field surveys. Then, the redundant factors were excluded from the initial fourteen landslide causal factors via factor correlation analysis. To determine the most effective causal factors, landslide susceptibility evaluations were performed based on four cases with different combinations of factors (“cases”). In the analysis, 465 (70%) landslide locations were randomly selected for model training, and 200 (30%) landslide locations were selected for verification. The results showed that case 3 produced the best performance for the statistical models and that case 2 produced the best performance for the RF model. Finally, the receiver operating characteristic (ROC) curve was used to verify the accuracy of each model’s results for its respective optimal case. The ROC curve analysis showed that the machine learning model performed better than the other three models, and among the three statistical models, the IOE model with weight coefficients was superior.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.