Abstract
Landslide susceptibility mapping is essential for land use planning and decision-making especially in the mountainous areas. The main objective of this study is to produce landslide susceptibility maps at Safarood basin, Iran using two statistical models such as an index of entropy and conditional probability and to compare the obtained results. At the first stage, landslide locations were identified in the study area by interpretation of aerial photographs and from field investigations. Of the 153 landslides identified, 105 (≈70%) locations were used for the landslide susceptibility maps, while the remaining 48 (≈30%) cases were used for the model validation. The landslide conditioning factors such as slope degree, slope aspect, altitude, lithology, distance to faults, distance to rivers, distance to roads, topographic wetness index (TWI), stream power index (SPI), slope–length (LS), land use, and plan curvature were extracted from the spatial database. Using these factors, landslide susceptibility and weights of each factor were analyzed by index of entropy and conditional probability models. Finally, the ROC (receiver operating characteristic) curves for landslide susceptibility maps were drawn and the areas under the curve (AUC) were calculated. The verification results showed that the index of entropy model (AUC=86.08%) performed slightly better than conditional probability (AUC=82.75%) model. The produced susceptibility maps can be useful for general land use planning in the Safarood basin, Iran.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.