Abstract

Landslides are natural disasters often activated by interaction of different controlling environmental factors, especially in mountainous terrains. In this research, the landslide susceptibility map was developed for the Sarkhoun catchment using Index of Entropy (IoE) and Dempster–Shafer (DS) models. For this purpose, 344 landslides were mapped in GIS environment. 241 (70%) out of the landslides were selected for the modeling and the remaining (30%) were employed for validation of the models. Afterward, 10 landslide conditioning factor layers were prepared including land use, distance to drainage, slope gradient, altitude, lithology, distance to roads, distance to faults, slope aspect, Topography Wetness Index, and Stream Power Index. The relationship between the landslide conditioning factors and landslide inventory maps was determined using the IoE and DS models. In order to verify the models, the results were compared with validation landslide data not employed in training process of the models. Accordingly, Receiver Operating Characteristic (ROC) curves were applied, and Area Under the Curve (AUC) was calculated for the obtained susceptibility maps using the success (training data) and prediction (validation data) rate curves. The land use was found to be the most important factor in the study area. The AUC are 0.82, and 0.81 for success rates of the IoE, and DS models, respectively, while the prediction rates are 0.76 and 0.75. Therefore, the results of the IoE model are more accurate than the DS model. Furthermore, a satisfactory agreement is observed between the generated susceptibility maps by the models and true location of the landslides.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.