Abstract

Analysis of stable isotope composition is an important tool in research on plant physiological ecology. However, large‐scale patterns of leaf‐stable isotopes for aquatic macrophytes have received considerably less attention. In this study, we examined the spatial pattern of stable isotopes of carbon (δ13C) and nitrogen (δ15N) of macrophytes leaves collected across the arid zone of northwestern China (approximately 2.4 × 106 km2) and attempted to illustrate its relationship with environmental factors (i.e., temperature, precipitation, potential evapotranspiration, sediment total carbon and nitrogen). Our results showed that the mean values of the leaf δ13C and δ15N in the macrophytes sampled from the arid zone were −24.49‰ and 6.82‰, respectively, which were far less depleted than those measured of terrestrial plants. The order of averaged leaf δ13C from different life forms was as follows: submerged > floating‐leaved > emergent. Additionally, our studies indicated that the values of foliar δ13C values of all the aquatic macrophytes were only negatively associated with precipitation, but the foliar δ15N values were mainly associated with temperature, precipitation, and potential evapotranspiration. Therefore, we speculated that water‐relation factors are the leaf δ13C determinant of macrophytes in the arid zone of northwestern China, and the main factors affecting leaf δ15N values are the complex combination of water and energy factors.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.