Abstract
Abstract:Isotopic composition of leaf carbon (δ13C) and nitrogen (δ15N) is determined by biotic and abiotic factors. In order to determine the influence of leaf habit and site on leaf δ13C and δ15N in the understorey of two Atlantic forests in Brazil that differ in annual precipitation (1200 and 1900 mm), we measured these isotopes in the shaded understorey of 38 tropical tree species (20 in the 1200-mm site and 18 in the 1900-mm site). Mean site values for δ15N were significantly lower at the 1200-mm site (−1.4‰) compared with the 1900-mm site (+3.0‰), and δ13C was significantly greater in the 1200-mm site (−30.4‰) than in the 1900-mm site (−31.6‰). Leaf C concentration was greater and leaf N concentration was lower at 1200-mm than at 1900-mm. Leaf δ15N was negatively correlated with δ13C across the two sites. Leaf δ13C and δ15N of evergreen and deciduous species were not significantly different within a site. No significant phylogenetic signal for any traits among the study species was found. Overall, site differences were the main factor distinguishing traits among species, suggesting strong functional convergence to local climate and soils within each site for individuals in the shaded understorey.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have