Abstract
Spatial statistics is a powerful tool for analyzing data that are illustrated as points or positions in a regular or non-regular state space. Techniques that are proposed to investigate the spatial association between neighboring positions are based on the point process analysis. One of the main goals is to simulate real data positions (such as antenna base stations) using the type of point process that most closely matches the data. Spatial patterns could be detailed describing the observed positions and appropriate models were proposed to simulate these patterns. A common model to simulate spatial patterns is the Poisson point process. In this work analyses of the Poisson point process—as well as modified types such as inhibition point process and determinantal Poisson point process—are presented with simulated data close to the true data (i.e., antenna base station positions). Investigation of the spatial variation of the data led us to the spatial association between positions by applying Ripley’s K-functions and L-Function.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.