Abstract
This paper introduces a kinetic model of crowd evacuation from a bounded domain, integrating social behavior and contagion dynamics. The model describes the spatial movement of individuals in a crowd, taking into account interactions with other people and the geometry of the environment. Interactions between healthy and infectious individuals can lead to disease transmission and are considered. The approach is grounded in the kinetic theory of active particles, where the activity variable represents both the infectious disease status of individuals (e.g., susceptible, infected) and the psychological state of pedestrians, including contagion awareness. Varying awareness levels influence individual behavior, leading to more cautious movement patterns, potentially reducing the overall infection rate. The performance of the model is evaluated through a series of numerical simulations. Different scenarios are examined to investigate the impact of awareness levels on pedestrian behavior, infectious disease spread, and evacuation times. Additionally, the effects of population immunization and individual contagion awareness are assessed to determine the most effective strategy for reducing infections. The results provide valuable insights into targeted strategies to mitigate contagion.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have