Abstract
The effects of spatial hole burning in a steady-state distributed feedback (DFB) laser are examined by numerically solving the coupled mode equations that describe the system. An approximate solution for the gain above threshold is derived and compared to the exact solution. It is shown that the self-induced grating that arises due to spatial hole burning significantly reduces the mode discrimination of index-coupled DFB lasers. This makes it difficult for these lasers to maintain single-longitudinal-mode behavior above threshold. However, it is found in addition that bulk-modulated (gain-coupled) DFB lasers do not lose their mode selectivity above threshold, indicating that these lasers may be better choices for narrow-linewidth operation.< <ETX xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">></ETX>
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.