Abstract
Faced with the difficult but urgent task of reducing carbon emission intensity, considering urban agglomeration as a fundamental spatial unit for this purpose has become increasingly important. However, as a long-standing and pivotal phenomenon in the development of urban agglomerations, the potential role of spatial functional division in urban agglomerations in reducing carbon emission intensity has been largely overlooked. To fill this gap, this paper explores the relationship between spatial functional division in urban agglomerations and carbon emission intensity, relying on a dataset of 19 urban agglomerations in China. The main results reveal an inverted U-shaped relationship between spatial functional division in urban agglomerations and carbon emission intensity. Spatial functional division in urban agglomerations increases carbon emission intensity in the initial stage; once it reaches a turning point, spatial functional division in urban agglomerations can reduce carbon emission intensity. This conclusion remains robust after conducting various robustness checks and addressing endogeneity concerns. This paper identifies productivity enhancement as an underlying mechanism that shapes this relationship. Moreover, the relationship between spatial functional division in urban agglomerations and carbon emission intensity exhibits heterogeneity based on function types and urban types. These findings emphasize that spatial functional division in urban agglomerations plays a unique role in reducing carbon emission intensity, which offers a new strategy for reducing carbon emission intensity from an individual city level to an entire urban agglomeration level.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have