Abstract

Binocular contrast interactions in human vision were studied psychophysically. Thresholds were obtained for sinewave grating stimulation of the right eye in the presence of simultaneous masking gratings presented to the right eye (monocular masking) or left eye (dichoptic masking). In the first experiment, thresholds were measured at 0.25, 1.0, 4.0, and 16.0 cycle per degree (cpd) as a function of the contrast of masking gratings of identical frequency and phase. Thresholds rose nonmonotonically with masking contrast. At medium and high contrast levels, dichoptic masking was more effective in elevating contrast thresholds than monocular masking, and approached Weber's Law behavior. In the second experiment, spatial frequency tuning functions were obtained for test gratings at five spatial frequencies, by measuring threshold elevation as a function of the spatial frequency of constant-contrast masking gratings. At 1.0, 4.0, and 16.0 cpd, the tuning functions peaked at the test frequencies. The dichoptic tuning functions had a bandwidth of about 1 octave between half-maximum points, narrower than +/- 1 octave bandwidths of the monocular tuning functions. At 0.125 and 0.25 cpd, the tuning functions were broader and exhibited a shift in peak masking to frequencies above the test frequencies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.