Abstract
AbstractIn this second part of our two-part paper, we provide a detailed, frequentist framework for propagating uncertainties within our multivariate linear least squares model. This permits us to quantify the impact of uncertainties in thermodynamic measurements—arising from calibrations and the data acquisition system—and the correlations therein, along with uncertainties in probe positions. We show how the former has a much larger effect (relatively) than uncertainties in probe placement. We use this non-deterministic framework to demonstrate why the well-worn metric for assessing spatial sampling uncertainty falls short of providing an accurate characterization of the effect of a few spatial measurements. In other words, it does not accurately describe the uncertainty associated with sampling a non-uniform pattern with a few circumferentially scattered rakes. To this end, we argue that our data-centric framework can offer a more rigorous characterization of this uncertainty. Our paper proposes two new uncertainty metrics: one for characterizing spatial sampling uncertainty and another for capturing the impact of measurement imprecision in individual probes. These metrics are rigorously derived in our paper and their ease in computation permits them to be widely adopted by the turbomachinery community for carrying out uncertainty assessments.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.