Abstract

Modelling and Geographic Information System (GIS) technology are employed in order to extend spatially, estimated and observed growing season values of the components of the surface heat energy budget for an area of alpine tundra in the Colorado Front Range. A surface equilibrium temperature model is calibrated for one sub-class of vegetation surface and is used to model surface heat energy budget component values for other sub-classes of vegetation. The model values compare favorably with values independently estimated or observed. The data are spatially displayed using the Idrisi GIS. At the microclimatic scale the presence of different sub-classes of vegetation plays a large role in controlling the actual values of the surface heat budget components. This is in contrast to the larger scale at which climatic variables such as air temperature control the overall vegetation type found in the area.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.