Abstract

The cloud amount, referred to as the frequency of cloud occurrences, is of great importance for the Earth–atmosphere system. It was conventionally quantified as the area fraction of clouds in a given region, discarding the three-dimensional nature of both cloud entities and their spatial distribution. Although the area fraction is explicit, it is the volume fraction that fully depicts cloud occurrences, and the area fraction is just related to a projection of the volume fraction. In this study, by using spaceborne radar measurements, the spatial distribution of cloud volume fraction throughout the troposphere was investigated, and the contributions of various cloud types at each location were clarified. Overall, the volume fraction of total clouds in the whole troposphere is 15.9%, while the corresponding area fraction relative to the global surface is 73.6%. The peak volume fraction occurs at 1 km altitude, mainly contributed by stratocumulus and cumulus. For a single cloud type, the maximum fraction is 48.8%, which is from stratocumulus and occurs at 1 km altitude above the Greenland Sea. Half of the eight cloud types, altostratus, cirrus, nimbostratus, and deep convective clouds, reach the nominal tropopause. In particular, the vertical distribution difference among multiple cloud types in each category (low-level, middle-level, and vertically extending) was clarified, and it was found that the dominant cloud type in a category varies notably with the location in the atmosphere.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.