Abstract

Abstract: Spatial analysis of forest tree distribution is a powerful tool to respond to basic ecological questions, and represent a useful support to strategies of genetic conservation and sustainable management practices of forest resources. Spatial analysis techniques combined with the use of Geographical Information Systems have been commonly applied to the study of stochastic processes in order to determine the existence of clusters to be related to microenviromental conditions and/or genetic factors. The present study focused on the distribution patterns of individuals of Mezilaurus itauba in a seasonal forest of the southern Amazon, with the aim of providing information about the spatial arrangement of these species at the juvenile and adult stages. Ripley’s K function with radius of 10, 20 and 30 m was used to describe spatial distribution patterns. The hypothesis of complete spatial randomness (CSR) of individuals was tested by constructing confidence envelopes for the Ripley’s K function through Monte Carlo simulations using a Poisson homogeneous process. The results obtained suggest a general random distribution of individuals, though a tendency to clustering at close distances was detected for individuals classified as adults (DBH > 50 cm). Contrastingly, a completely randomized spatial pattern was found for juveniles trees (DBH < 50 cm). Our results provide a useful baseline for the development of sustainable management plans and conservation of Mezilaurus itauba, as well as for other economically-exploited, native tree species in the southern Amazon forest.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call