Abstract

The current energy distribution infrastructure in many urban areas either cannot support anticipated future energy use or would require significant rehabilitation even if current use were maintained. Understanding the dynamics of local energy use is an important precondition of understanding how to remedy this situation. This paper builds a model to estimate the building sector energy end-use intensity (kwh/m 2 floor area) for space heating, domestic hot water, electricity for space cooling and electricity for non-space cooling applications in New York City. The model assumes that such end use is primarily dependent on building function, whether residential, educational or office for example, and not on construction type or the age of the building. The modeled intensities are calibrated using ZIP code level electricity and fuel use data reported by the New York City Mayor's Office of Long-Term Planning and Sustainability. The end-use ratios were derived from the Residential and Commercial Building Energy Consumption Survey's Public Use Microdata. The results provide the ability to estimate the end-use energy consumption of each tax lot in New York City. The resulting spatially explicit energy consumption can be a valuable tool for determining cost-effectiveness and policies for implementing energy efficiency and renewable energy programs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call