Abstract
Abstract We present our analysis of the Suzaku data of U Geminorum (U Gem) from 2012 both in quiescence and outburst. Unlike SS Cygni (SS Cyg), the hard X-ray flux of U Gem is known to increase at times of optical outburst. A sophisticated spectral model and reliable distance estimate now reveal that this can be attributed to the fact that the mass accretion rate onto the white dwarf (WD) does not exceed the critical rate that causes the optically thin to thick transition of the boundary layer. From comparison of the X-ray and optical light curves, the X-ray outburst peak seems to be retarded by 2.1 ± 0.5 d, although there remains uncertainty in the X-ray peak identification, due to short data coverage. The larger delay than SS Cyg (0.9–1.4 d) also supports the lower accretion rate in U Gem. A fluorescent iron 6.4 keV emission line bears significant information about the geometry of the X-ray-emitting hot plasma and the accretion disk (AD) that reflects the hard X-ray emission. Our reflection simulation has shown that the optically thick AD is truncated at a distance of 1.20–1.25 times the white dwarf radius (RWD) in quiescence, and the accreting matter in the disk turns into the optically thin hard-X-ray-emitting plasma at this radius. In outburst, on the other hand, our spectral analysis favors the picture that the optically thick disk reaches the WD surface, although disk truncation can take place in the region of <1.012 RWD. From the profile of the 6.4 keV line, we have also discovered that the accreting matter is heated up close to the maximum temperature immediately after the matter enters the boundary layer at the disk truncation radius. This is consistent with the fact that the hard X-ray spectra of dwarf novae, in general, can be well represented with the cooling flow model.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have