Abstract
AbstarctThe spatial pattern of glacier surface melt was measured with a resolution of 20–100m within a region extending 1 km up-glacier from the terminus of Rhonegletscher, Switzerland. The melt rate was monitored from 6 July to 6 September 2009 using 44 ablation stakes. We also measured the surface albedo near the stakes to investigate the importance of this parameter for the melt-rate distribution. The melt rate varied from 32.8 to 71.9 mm w.e. d–1 in the study area. Our measurements suggest that the spatial variation of the melt rate can be explained by (1) shading of the ice surface by neighbouring mountains, (2) surface albedo and (3) effects of microclimate (e.g. radiation from sidewalls) on the surface energy balance. The observed melt-rate distribution was compared to the results of a temperature-index melt model, which takes into account shading of direct solar illumination but not the other two effects. The model reproduces some important features of the field data, but its spatial variations are generally less than the measured values. Our study shows the importance of albedo and other local conditions in the accurate estimation of the small-scale melt-rate distribution.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have