Abstract

Photoluminescence, Raman mapping, cathodoluminescence and transmission electron microscopy (TEM) have been carried out on a “zebra” diamond, containing both brown and colourless bands. The stone was cut into two and one part was given high-pressure high temperature (HPHT) treatment, removing the brown colouration. The parts were then cut into (110) sections. In the untreated stone the morphology of brown stripes is consistent with that of slip bands formed during plastic deformation and Raman mapping shows they are under strong compressive stress. Photoluminescence from N3 and H3 centres, as well as lines at 406.3 nm, 491.3 nm and 535.9 nm, are correlated with brown bands in the untreated sample, while cathodoluminescence shows that band-A luminescence is anticorrelated. HPHT treatment reduces internal stress, and eliminates or reduces correlated luminescence. TEM reveals long straight dislocations and dislocation dipoles in the brown bands, consistent with deformation by slip and concurrent intrinsic point defect production, while clear bands have curved and tangled dislocation networks. We postulate that vacancies produced by plastic deformation aggregate into clusters responsible both for the brown colouration and an increase in volume that results in compressive stress. The 535.9 nm line has characteristics of an interstitial-type defect and may be formed by the trapping of interstitials generated during plastic deformation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.