Abstract
At present, a large-scale relocation of industrial enterprises is taking place in major cities in China, and a large number of contaminated relocation sites are being generated, among which the heavy metal pollution is particularly serious. In order to analyze the pollution status, spatial distribution, and sources of heavy metals in the soil of a lead factory in Sanmenxia, the spatial variation and distribution characteristics of heavy metals in the soil were analyzed using geostatistics, and the main sources of heavy metals in the soil were analyzed using a PMF model. The results showed that the average values of As, Cd, Cu, Pb, Hg, and Ni in the soil far exceeded the background values of the soil environment in Henan province; the contents of As, Cd, Pb, and Hg exceeded the screening values of soil pollution risk; and the contents of As, Pb, and Hg exceeded the control values of soil pollution risk. The high-value area was located on the northern part of the slag yard; the Cr, Ni, and Cd high-value area was located in the north and south of the slag yard; the high-value As area was located in the slag yard between the southern area and the living quarters; the Cu and Pb high-value area was relatively scattered, mainly concentrated in the central part of the raw material storage area and furnace area; and Ni and Cd and Cu and Pb had the same spatial distribution characteristics. Based on the PMF model, it can be seen that there were three main sources of the seven heavy metals, and Cd was mainly from waste residue accumulation, with a contributing rate of 87.60%. Cu, Pb, and Hg were mainly soil parent material, with contribution rates of 92.50%, 75.20%, and 95.40%, respectively. Cr, Ni, and As were mainly raw material dust exhaust gas sources, with contribution rates of 80.80%, 83.30%, and 62.00%, respectively.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.