Abstract

In order to explore the characteristics and sources of heavy metal pollution in cultivated soil around a red mud yard in Chongqing, the content and spatial distribution characteristics of eight heavy metal elements (Cd, Cr, Hg, Ni, Pb, As, Cu, and Zn) in the soil were analyzed, and the single factor pollution index method and Nemerow comprehensive pollution index method were used to evaluate the characteristics of heavy metal pollution in soil. On the basis of correlation analysis, the APCS-MLR and PMF models were used to quantitatively analyze the sources of heavy metals. The results showed that the average contents of the other seven heavy metal elements were higher than the background values of Chongqing soil, except for that of Cr. The heavy metals Cd, Hg, and As were moderately polluted, and Pb, Cu, Ni, and Zn were mildly polluted. The spatial distribution pattern of Cr, Ni, Pb, Cu, and Zn in the soil was similar, and there was a very significant positive correlation between them (P < 0.01). The spatial distribution characteristics of Cd, Hg, and As were significantly different, and there was no significant correlation between them (P > 0.05). The source apportionment showed that the sources of heavy metals in the soil in the study area were relatively complex, and the APCS-MLR and PMF models could identify the same four pollution sources, namely red mud yard percolation emission and natural sources, thermal power generation emission sources, agricultural activities and natural sources, and non-ferrous metal smelting emission sources. There was little difference in the results of source apportionment between the two models. The contribution rates of the four pollution sources in the APCS-MLR model were 51.8%, 18.0%, 15.9%, and 14.3%, respectively, whereas those in the PMF model were 45.9%, 12.8%, 21.5%, and 19.8%, respectively.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call