Abstract

Metasilicate-rich groundwater could meet the high demand of the international community for high-quality water. In order to comprehensively analyze the genetic mechanism of metasilicate-rich groundwater, and help human communities effectively exploit and utilize high-quality water resources, taking the Ji’nan rock mass area as an example, this study carried out systematic research on the spatial distribution and genetic mechanism of the metasilicate-rich groundwater Based on the regional hydrogeological conditions, the influencing factors on the spatial distribution characteristics of the metasilicate-rich groundwater in the study area were systematically sorted out by means of petrogeochemistry, hydrochemistry, and chemical weathering index analysis, and the accumulation mechanism of the metasilicate-rich groundwater was discussed from the perspective of water-rock interaction. The results show that: (1) On the northwest side and part of the northeast side of Ji’nan rock mass, the metasilicate content of the groundwater samples exceeded 25 mg/L; the metasilicate content on the south, west, and east sides were relatively low; (2) Ji’nan rock mass is mainly composed of gabbro easily weathered, with high SiO2 content and high weathering degree showing obvious characteristics of desilication. FeS2 developing along the contact zones between the rock mass and surrounding rocks was easily oxidized to form H2SO4, which enhanced the solubility of silicate minerals in the groundwater. Ji’nan rock mass was located in the low-lying position of the monocline structure, which presented better water conservation and recharges conditions. The above factors resulted in the metasilicate-rich groundwater accumulating in the area of Ji’nan rock mass and showed different spatial distribution characteristics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.