Abstract
Denitrification and ANAMMOX are the main nitrogen removal processes in lakes, which are of great significance for maintaining the nitrogen balance. Lake Taihu is a large, shallow lake. There are great spatial and temporal differences in the nutrient levels and algal blooms, which will affect the rates of denitrification and ANAMMOX. In order to understand the spatial and temporal variations in the denitrification and ANAMMOX rates and their influencing factors in Lake Taihu, undisturbed sediment cores were collected from Meiliang Bay, Gonghu Bay, Zhushan Bay, Dapukou Bay, Xukou Bay, and the center of Lake Taihu in the spring and summer of 2020. The results showed that the spatial distribution of the denitrification and ANAMMOX rates varied greatly in different areas of Lake Taihu in spring. The denitrification and ANAMMOX rates were (27.74±8.45)-(142.43±35.54) μmol·(m2·h)-1 and (2.35±1.06)-(17.95±8.66) μmol·(m2·h)-1, respectively. The contribution of ANAMMOX to nitrogen removal was relatively low, ranging from (7.82±1.71)% to (11.20±1.53)%. In summer, the denitrification and ANAMMOX rates were (165.68±62.14) μmol·(m2·h)-1 and (33.56±10.66) μmol·(m2·h)-1, respectively. The nitrogen removal rates were relatively low in other areas where the denitrification and ANAMMOX rates were (25.47±10.46)-(42.50±16.46) μmol·(m2·h)-1 and (2.65±0.94)-(5.95±2.65) μmol·(m2·h)-1, respectively. The contribution of ANAMMOX to nitrogen removal was (13.62±1.95)%-(7.24±1.78)%. The denitrification rate in summer was generally lower than that in spring, while the ANAMMOX rate did not decrease significantly compared with that in spring. The statistical analysis showed that the denitrification and ANAMMOX rates were significantly correlated with the substrate nitrogen concentration (P<0.01), which indicated that the nitrogen concentration was the main factor causing the difference in the nitrogen removal rates in different lake regions. In addition, there was a significant positive correlation between the contribution rate of ANAMMOX and the concentration of chlorophyll-a (P<0.05), thereby indicating that cyanobacteria blooms have a great influence on the change in the contribution of ANAMMOX to nitrogen removal.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.