Abstract

We investigate the statistical properties of wave functions in chaotic nanostructures with spin-orbit coupling (SOC), focussing in particular on spatial correlations of eigenfunctions. Numerical results from a microscopic model are compared with results from random matrix theory in the crossover from the gaussian orthogonal to the gaussian symplectic ensembles (with increasing SOC); one- and two-point distribution functions were computed to understand the properties of eigenfunctions in this crossover. It is found that correlations of wave function amplitudes are suppressed with SOC; nevertheless, eigenfunction correlations play a more important role in the two-point distribution function(s), compared to the case with vanishing SOC. Experimental consequences of our results are discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.