Abstract

Spatial capture-recapture (SCR) models are commonly used to estimate animal density from surveys on which detectors passively detect animals without physical capture, for example, using camera traps, hair snares, or microphones. An individual is more likely to be recorded by detectors close to its activity center, the centroid of its movement throughout the survey. Existing models to account for this spatial heterogeneity in detection probabilities rely on an assumption of independence between detection records at different detectors conditional on the animals' activity centers, which are treated as latent variables. In this paper, we show that this conditional independence assumption may be violated due to the way animals move around the survey region and encounter detectors, such that additional spatial correlation is almost inevitable. We highlight the links between the well-studied issue of unmodeled temporal heterogeneity in nonspatial capture-recapture and this variety of unmodeled spatial heterogeneity in SCR, showing that the latter causes predictable bias in the same way as the former. We address this by introducing a latent detection field into the model, and illustrate the resulting approach with a simulation study and an application to a camera-trap survey of snow leopards Panthera uncia. Our method is a unifying model for several existing SCR approaches, with special cases including standard SCR, models that account for nonspatial individual heterogeneity, and models with overdispersed detection counts.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.