Abstract
Electromyographic activity of dorsal neck muscles and neck torques was recorded to study vestibulocollic, cervicocollic, and combined reflexes in alert and decerebrate cats during rotations of the whole body, the body except for the head, and the head but not the rest of the body. Cats were rotated about many axes that lay in the frontal, sagittal, and horizontal planes using sinusoidal 0.25-Hz waveforms or sum-of-sinusoid wave-forms. Robust electromyographic responses were recorded from six muscles, with response directionality that in most cases did not show strong dependence on the reflex tested or on other factors including exact neck angle, stimulus amplitude from 5 degrees to 60 degrees, and intact versus decerebrate state. Based on the strength of responses to rotations about all the tested axes, neck muscles could be characterized by maximal activation direction vectors representing the axis and direction of rotation in three-dimensional space that was most excitatory during reflex responses. Responses to rotations about axes that lay in a coordinate plane were predicted by a cosine function of the angle between the axis under test and the maximally excitatory axis in the plane. All muscles were excited by the nose down phase of pitch rotation and by yaw and roll away from the side on which the muscle lay. Biventer cervicis was best activated by rotations with axes near nose-down pitch, and its axis of maximal activation also had small, approximately equal components of yaw and roll toward the contralateral side. Complexus was best excited by rotations with axes nearest roll, but with large components along all three axes. Occipitoscapularis was best excited by rotations about axes near pitch, but with a moderately large contralateral yaw component and a smaller but significant contralateral roll component. Splenius was best excited by rotations with a large component of contralateral yaw, considerable nose-down pitch, and a smaller component of contralateral roll. Rectus major was best excited by rotations near nose-down pitch, but with a substantial contralateral yaw component and smaller contralateral roll component. Obliquus inferior was best excited by rotations with a large component of contralateral yaw, but with considerable contralateral roll and nose-down pitch components. All muscles responded as though they received convergent input from all three semicircular canals. Vestibulocollic and combined reflex responses in alert cats and vestibulocollic, cervicocollic, and combined responses in decerebrate cats appeared to have the same directionality, as evidenced by insignificant shifts in maximal activation vectors.(ABSTRACT TRUNCATED AT 250 WORDS)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have