Abstract

Most nanoparticles (NPs) have difficulty deeply penetrating into tumor tissues. Here, we designed a spatially controlled multistage nanocarrier by encapsulating small polyamidoamine (PAMAM) dendrimers (~5 nm) within large gelatin NPs (~200 nm). This multistage nanocarrier is meant to be stable during systemic circulation and to leak through tumor vasculature walls by the enhanced permeation and retention (EPR) effect. Afterwards, this multistage nanocarrier release PAMAM dendrimers in response to the high matrix metalloproteinase-2 (MMP-2) enzymes in the tumor microenvironment, and further transport into tumor cells. In this study, the demonstrated high intracellular uptake and deep penetration into tumor model verified the effective enzymes-responsively and spatially controlled multistage penetration of these combined nanocarriers. In addition, these multistage nanocarrier were further loaded with anti-tumor drug methotrexate (MTX) and evaluated both in vitro and in vivo to investigate their anti-tumor effect, which demonstrated that this multistage nanocarrier hold great potential in improving anti-tumor efficiency.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.