Abstract

Surface-initiated atom transfer radical polymerization (ATRP) of 2-(tert-butylamino)ethyl methacrylate (TBAEMA) produced pH-responsive secondary amine-functionalized polymer brushes with dry thicknesses ranging from 4 to 28 nm, as determined by ellipsometry. At low pH, linear PTBAEMA brushes became protonated and highly swollen; brush collapse occurred when the solution pH was increased to ca. 7.7 due to deprotonation. PTBAEMA brushes were subsequently cross-linked using tolylene-2,4-diisocyanate-terminated poly(propylene glycol) (PPG-TGI) in either THF (a good solvent for PTBAEMA) or n-hexane (a poor solvent). The intensity of the C–C–O component (286.5 eV) in the C1s X-ray photoelectron spectrum increased after reaction with PPG-TDI, suggesting that cross-linking was successful in both solvents. Ellipsometry studies indicated that the pH-responsive behavior of these cross-linked brushes is dictated by the spatial location of the PPG-TDI cross-linker. Thus, uniformly cross-linked brushes prepared in THF became appreciably less swollen at a given (low) pH than surface-cross-linked brushes prepared in n-hexane. Micro- and nanopatterned PTBAEMA brushes were prepared via UV irradiation and interference lithography, respectively, and characterized by atomic force microscopy. The change in brush height was determined as a function of pH, and these AFM observations correlated closely with the ellipsometric studies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.