Abstract

Fe3O4@PDEA-PEGMA core-shell magnetic nanoparticles were prepared via surface-initiated atom transfer radical polymerization (ATRP). First, an ATRP initiator was immobilized onto the surface of Fe3O4 magnetic nanoparticles, then poly[2-(diethylamino)ethyl methacrylate] (PDEA) and poly(poly[(ethylene glycol) monomethacrylate]) (PEGMA) were grafted from the surface of the magnetic nanoparticles in succession. Each step of the reactions gave distinctive thermogravimetric analysis curves. Polymer shells cleaved from Fe3O4 core were measured by gel permeation chromatography, while its molecular weight was found to increase with successive polymerization (with a polydispersity of approximately 1.3–1.4). The architecture of the core-shell nanoparticles was confirmed by transmission electron microscopy. The Fe3O4@PDEA-PEGMA hybrid magnetic nanoparticles formed stable dispersions in H2O at low pH (pH < 6) and precipitated out at high pH (pH > 6). This pH transition behavior was also observed in dynamic light scattering experiments.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call