Abstract

Spatially confined structure exhibits surprising physics and chemistry properties that significantly impact the thermodynamics and kinetics of oxidation reactions. Herein, porous carbons are rationally designed for tunable nanopore structures (micropores, 4.12 % ∼ 91.64 %) and diverse spatial confinement ability, as indicated by their differential enhancement performances in the Fenton oxidation. Porous carbons can alter the characteristics of the charge transport process for accelerating sustainable electron shuttle between hydrogen peroxide and iron species, and thus exhibit long-term performance (17 cycling tests). The positive spatial confinement for boosting Fenton oxidation (charge transport, mass transfer) occurs in nanochannels < 1 nm, while the diminished effect ranges of 1–1.5 nm, and the adverse effect ranges greater than 1.5 nm. The density functional theory calculation provides further support for certifying the promoted charge transport process and spatial confinement for hydroxyl radical inside the confined nanochannel structure (below 1 nm, especially) by the comparatively large electron cloud and the relatively negative adsorption energy, respectively. Coupling nanochannels with the Fenton oxidation greatly utilize hydrogen peroxide, due to spatial nanoconfinement and selective adsorption towards target contaminants. This strategy of deploying nanochannels in catalyst design can be applied for the elaborate construction of efficient nanostructured catalysts for environmental remediation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call