Abstract

The CO2 dry reforming of methane (DRM) reaction is an important technology with high prospects to reduce greenhouse gas emissions while simultaneously producing syngas for industrial usage. To date, the lack of an effective catalyst for the reaction has inhibited its commercialization. The coking and sintering behaviors of the catalysts are key factors for commercial production of syngas from DRM reaction. A microcapsule catalyst prepared by sol–gel method with Ni/ZSM‐5 as core and amorphous SiO2 as shell is successfully synthesized. The characterizations of the catalysts are analyzed using X‐ray powder diffraction (XRD), transmission electron microscopy (TEM), H2 temperature programmed reduction (H2‐TPR), NH3 temperature programmed desorption (NH3‐TPD), and thermogravimetry & differential scanning calorimetry (TGA‐DSC). The spatial confinement of the Ni metal particles between the SiO2 shell and ZSM‐5 suppresses Ni particles aggregation by strengthening the interaction between Ni particles and ZSM‐5 core. The coking‐resistant ability is equally improved. The capsule catalysts isolate the contact between the carbon deposits and the nickel active centre, thus improving the activity of the catalysts. 10Ni/ZSM‐5@SiO2 emerged superior in activity in comparison to other catalysts.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.