Abstract
Dry reforming of methane (DRM) reaction has great potential in reducing the greenhouse effect and solving energy problems. Herein, the DRM reaction mechanism and activity on Ni16/LaZrO2 catalyst under electric fields were comprehensively investigated by combining density functional theory calculations with microkinetic modeling. The results showed that La doping increases the interaction between Ni and ZrO2 by Ni cluster transfer of more electrons. The adsorption strength of species followed the order Ni16/ZrO2 > Ni16/LaZrO2, which is consistent with the results for the d-band center but opposite to the metal-support interaction. The best DRM reaction path on Ni16/LaZrO2 was the CH2-O pathway, which is different from the CH-O pathway on Ni(111) and Ni16/ZrO2. Both positive and negative electric fields of strong and weak metal-support interactions reduced the energy barrier of DRM reaction. Importantly, our results showed that the more dispersed and smaller Ni12/LaZrO2 model by considering the dispersing effect induced by La doping, which displayed very different results from that of Ni16/LaZrO2: reduced the energy barrier for methane decomposition, thereby promoting DRM reaction activity. Microkinetic results showed that the carbon deposition behavior of DRM becomes weaker on Ni16/LaZrO2 due to the suppression of methane decomposition in the presence of La doping compared to Ni16/ZrO2, but the opposite result is obtained on Ni12/LaZrO2. The order of DRM reactivity was Ni16/LaZrO2 < Ni16/ZrO2 < Ni12/LaZrO2, which is consistent with the experiment observations. The conversion of methane and CO2 was higher in positive electric fields than in negative electric fields at low temperatures, but the results were opposite at high temperature. Negative electric fields can improve the carbon deposition resistance of Ni-based catalysts compared to positive electric fields. The degree of rate control analysis showed that CHx* oxidation also plays an important role in the DRM reaction. We envision that this study could provide a deeper understanding for guiding the widespread application of electric field catalysis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.