Abstract

The proper understanding of the spatiotemporal characteristics of multi-year droughts and return periods is important for drought risk assessment. This study evaluated and compared the spatiotemporal variations of drought characteristics and return periods within mainland China between 1961 and 2013. Standardized Precipitation Index (SPI), Standardized Precipitation Evapotranspiration Index (SPEI) and Composite Index (CI) were calculated at multiple timescales, the run theory was used for objective identification and characterization of drought events while Kendall’s τ method was used to analyze their dependencies. Within the univariate framework, marginal distributions of duration, severity, and peak were derived by fitting Exponential, Weibull and GDP distributions respectively and the drought return periods was investigated and mapped. Comparison of drought indices showed that SPEI and CI performed better than SPI in delineating spatial patterns of drought characteristics. This might be attributed to the temperature effect on evapotranspiration and therefore on drought index. Considering the increasing trend in reference evapotranspiration in the 21st century, the importance of utilizing temperature-based drought index is imperative. Severe and extreme droughts occurred in the late 1990s in many places in China while persistent multi-year severe droughts occurred more frequently over North China, Northeast China, Northwest China and Southwest China. The spatial patterns showed that regions characterized by higher drought severity were associated with higher drought duration. The North China, Northwest China, and Southwest China had much longer drought durations during the 1990s and 2000s. As droughts normally cover large areas, regional drought return periods has been showed to be more effective in providing support for drought management than station based drought return periods. Studies on the spatial comparability of drought return periods across mainland China have therefore been undertaken for drought mitigation and effective utilization of water resources.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call