Abstract
In the usual statistical approach to spatial classification, it is assumed that each pixel belongs to precisely one of a small number of known groups. This framework is extended to include mixed-pixel data; then, only a proportion of each pixel belongs to each group. Two models based on multivariate Gaussian random fields are proposed to model this fuzzy membership process. The problems of predicting the group membership and estimating the parameters are discussed. Some simulations are presented to study the properties of this approach, and an example is given using Landsat remote-sensing data.< <ETX xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">></ETX>
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Pattern Analysis and Machine Intelligence
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.