Abstract

We consider the problem of supervised classifying the multivariate Gaussian random field (GRF) single observation into one of two populations in case of given training sample. The populations are specified by different regression mean models and by common factorized covariance function. For completely specified populations, we derive a formula for Bayes error rate. In the case of unknown regression parameters and feature covariance matrix, the plug-in Bayes discriminant function based on ML estimators of parameters is used for classification. We derive the actual error rate and the asymptotic expansion of the expected error rate associated with plug-in Bayes discriminant function. These results are multivariate generalizations of previous ones. Numerical analysis of the derived formulas is implemented for the bivariate GRF observations at locations belonging to the two-dimensional lattice with unit spacing.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.