Abstract

The spatial distribution and long-time variation of the deep-developed boundary layer are not well understood in arid and semi-arid regions of northwest China. ERA-Interim (ECMWF Reanalysis data, ECMWF: European Centre for Medium-Range Weather Forecasts) were used to study the deep-developed boundary layer in the five representative areas in summer and then the Weather Research Forecast (WRF) model was applied to simulate and verify its applicability. The results show that the boundary layer heights in the five representative areas are higher in late spring and summer (the highest is 2485~3502 m in June) and lower in autumn, winter and early spring (the lowest is 758~907 m in December). The seasonal variations of the boundary layer height are smaller at 02:00 BJT and 08:00 BJT, while the variations are relatively larger at 14:00 BJT and 20:00 BJT. The atmospheric boundary layer, with heights over 4000 m, generally exists in late spring and summer. The boundary layer heights are higher in the arid region than in the semi-arid region and the deep-developed boundary layer lasts longer in the arid region. The boundary layer heights present reductions from the northwest to the southeast, except for Minqin in the middle north. The numerical simulation results show that there is a significant difference between different combinations of parameterization schemes to simulate the deep-developed boundary layer in these areas. The combination Goddard+SLAB+ACM2 performs better in the extreme arid area, Dunhuang, and the arid areas, Jiuquan and Minqin, whereas the simulation effect of the combination Dudhia+Noah+ACM2 is better in the semi-arid areas, Yuzhong and Lanzhou. The difference between the schemes is related to the determination of the boundary layer height.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call