Abstract
A two-dimensional continuous wavelet transform employing a real mother wavelet is applied to phase analysis of spatial carrier fringe patterns. In this method, a Hilbert transform is first performed on a carrier fringe pattern to get an analytic signal. Then a two-dimensional wavelet transform is calculated for the signal that is yielded by the first transform. Finally, the height-demodulated phase information can be gotten from the wavelet transform coefficients at the wavelet ridge position. The performance of the proposed method has been evaluated by using computer-generated and real fringe patterns. The result performed better than that of one-dimensional real wavelet transform algorithms in the area with phase discontinuous points and high phase variation, especially when there is much noise in the fringe patterns. Computer simulations and experiments verified the validity of the proposed method.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have